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ABSTRACT
We present a detailed model of the integrated power

system coupled to hydrodynamics that allows us to
study global sensitivities in the All-Electric Ship. A
novel element of our formulation is the stochastic mod-
eling of the coupled system to account for uncertainty in
the parameters or operating conditions. This new com-
putational framework is applied to a model of the DDG-
51 destroyer that involves a 19 MW 15-phase induc-
tion machine and an indirect field oriented controller.
In particular, we simulate extreme events correspond-
ing to propeller emergence and firing of pulsed power
weapons.

1. INTRODUCTION
In the All-Electric Ship (AES) architecture, the power

sharing between the propulsion units and the high-
power equipment, especially under heavy propulsion
demands and casualty conditions, has recently been
identified as an important design issue [6], [27], [35].
In the new AES configuration, there is an increasing
demand for electric power for ship system automation,
electrical weaponry, electric propulsion, and ship ser-
vice distribution. About 70% to 90% of power from
the generator units in the fully integrated power system
(IPS) is consumed in the propulsion systems [6]. There-
fore, when a large power demand is imposed on an elec-
trical bus during a mission or life critical situation, the
power distribution must be optimally modified to yield
the most efficient power usage and to maintain continu-
ity of service [35].
This complex problem is compounded by the sea

states which are unpredictable, leading to stochastic
time-varying propulsion loads. It is, therefore, challeng-
ing for the electric ship designer to thoroughly investi-
gate interactions between machines, power electronics,
and uncertain sea conditions. To date there have been no
published papers that account for dynamic interactions
of propeller and ship hydrodynamics with a large-scale
shipboard IPS. In this paper, we develop stochastic mod-
els of the IPS and the propeller coupled to random wave
dynamics and ship motion. In the following, we present
some details of the system that we model, the technical
approach, and first results.

2. SYSTEM MODELING
To investigate the influence of the propeller loading

and the pulsed power load on the AC propulsion and
power generation in the electric ship, modeling of both
power systems and hydrodynamics of ship and propeller
must be introduced. In our study, the IPS is similar to the
model described in [29] for a destroyer class. In sum-
mary, the main AC subsystem of this IPS consists of
a 21 MW, 3-phase, 60Hz Synchronous Machine (SM)
as a generator, a close-loop drive using the indirect ro-
tor field oriented control of 19 MW, 15-phase Induc-
tion Machine (IM) as a propulsor, and a pulsed power
charger for an EM gun. The generator supplies the volt-
age to the 3-phase 4160V AC distribution bus, which
must be filtered by a harmonic filter before connect-
ing to the induction motor drive. The detailed derivation
of machine equations can be found in [22] and [29]. A
power converter and the Indirect Field Oriented Control
(IFOC) using the sine-triangle modulation technique for



a current regulator are incorporated into the propulsion
system to control the torque of the induction machine.
According to [14], the IFOC employs an inner loop with
a current feedback from IM and an outer loop with IM’s
shaft angular velocity feedback for computing the ma-
chine rotational angle in the IFOC. The IPS configura-
tion considered in this study is similar to a split plant
arrangement in [4], shown in Figure 1. In the split plant
configuration, a single high-power generator supplies
power to a propulsion unit, one EM gun and a gun sup-
port service. On the other hand, two high-power gen-
erators connect through AC distribution bus to support
two propulsions and two EM gun in the parallel plant
arrangement. Also, a schematic of the IPS installed in
the ship we model here is shown in Figure 2.

































Figure 1. A one-line diagram of the AC power generator
and power distribution with the closed-loop torque control of
the induction machine.

2.1. Hydrodynamics
The propeller model, used in this study, is based on

a five-blade, fixed-pitch, highly skewed propeller with
a maximum skew angle of 32 degrees [1]. Several ef-
fects, such as fluctuation of in-line water inflow, venti-
lation, and in-and-out-of water effects [21], can cause
a reduction in the propeller thrust and torque from its
nominal operating condition. Both the in-line water in-
flow variation and the in-and-out-of water effects di-
rectly affect the propeller loading. The propeller emer-
gence can abruptly reduce the propeller thrust because
of a loss in the propeller effective disc area. Especially,
when the ship operates in the rough sea condition, the
propeller emergence can occur intermittently, resulting
in ship speed reduction, sudden increase in shaft angular

Figure 2. A diagram of the ship motion in the surge direc-
tion within the head sea.

speed, and rapid decrease in motors’ current. Propeller
thrust and torque loss can be represented by the thrust
loss factor, βT , and the torque loss factor, βQ, multiplied
by the open-water propeller thrust, Tp, and torque, Qp,
respectively. According to [21], the thrust loss factor due
to the propeller emergence is assumed to be proportional
to the effective disc area as follows:

βT = real
(

1−
arccos( hR)

π
+

h
R
π

√

1− (
h
R

)2
)

, (1)

where h/R is the relative submergence, with h the pro-
peller shaft submergence and R the propeller radius.
Thus, we have βT = 1 when the propeller is fully sub-
merged. Also, βQ, corresponding to a reduction of the
effective propeller disc area, and it is related to βT as
follows:

βQ = (βT )m, 0< m< 1, (2)

where for an open-water propeller, m is typically within
the range of 0.8 and 0.85, resulting in a larger βQ than
βT , such that the propeller efficiency is less than unity if
the loss due to propeller emergence increases.
To model the wave effects, first, we assume that

nonlinear and viscous effects are small compared to



Table 1. Specifications of the DDG 51 Flight I.

Parameters full-scale DDG-51
Length [m] 153.90
Draft [m] 9.45
Beam [m] 20.12

Displacement [tons] 8,300
Speed [knot] 31

Propeller Diameter [m] 5.20
Propulsion Power [hp] 100,000

wave inertia for a ship motion in the sea. Moreover,
we assume that deep water random waves, modeled
through the one-parameter Pierson andMoskowitz spec-
trum [13], derived on the basis of North Atlantic data
and described by the significant wave height, H 1/3.
To model ship hydrodynamics, we must consider the

interaction between the propeller and ship hull because
the wake created by the hull modifies the propeller ad-
vance velocity (Va) [17] withVa = (1−w)U , whereU is
the ship speed. The wake fraction (0<w< 0.4) [17] in-
dicates the velocity reduction due to the wake; here we
used w = 0.2. Moreover, the presence of the propeller
at the stern also increases the drag force on the vessel;
thus, the propeller thrust must be decreased by a fac-
tor (1− td), where td is the so-called “thrust deduction
factor” to account for the difference between the self-
propelled and the towed-model resistance; in this study
we used td = 0.2.
The specifications of the full-scale USS DDG-51 Ar-

leigh Burke-class [15], driven by the electrical propul-
sor, are given in Table 1. This full-scale ship is employed
in the ship hydrodynamics calculations for calm water
and added resistances, and for propeller performance.
In this study, we consider only the surge motion of the

electric ship, driven by two propellers connected to two
identical IPS, in head sea. We note that the total propul-
sion system of DDG-51 consists of 4 identical IPS and
achieves 31 knots; with two IPS it achieves a maximum
speed of about 24 knots. The ship’s motions in other
directions i.e., sway, heave, roll, pitch, and yaw are as-
sumed to be small. Thus, the equation of ship motion
with the induction motor directly driven the propeller
can be described as:

(M+Ma)
dU(t)
dt

= 2(1− td)Tp(n,U)−R(U) (3)

−R̄AR(U)−R2nd−AR(U, t),

Js
dωr(t)
dt

= Te−Qp(n,U)ηbηr, (4)

where n denotes revolutions per minute of the propeller,
n = ω ∗ 30/π, and M and Ma are the ship mass and
added mass in the surge direction, respectively. The ro-
tational inertia, Js, includes the IM rotor and propeller
inertia; also, Tp and Qp are the propeller open-water
thrust and torque, respectively, i.e., Tp = KT (J)ρn2D4
and Qp = KQ(J)ρn2D5, where J = Va

nD is the advance
velocity. Also, KT and KQ are thrust and torque coeffi-
cients of the propeller, while ηb and ηr denote the bear-
ing and propulsive efficiency. The drag force, R, cor-
responds to the calm-water resistance; it can be found
from the non-dimensional drag coefficient, CD(Re,Fr),
as R=CD 12ρSU

2 where S is the wetted surface area. The
drag coefficient CD [13] is composed of a frictional re-
sistance coefficient (CF(Re)) and a residual resistance
coefficient (CR(Fr)), where Re and Fr are Reynolds
and Froude numbers, respectively. The added resistance,
RAR, is associated with the involuntary speed reduction
due to the waves. Assuming that the added resistance
is a second-order nonlinear system obeying the proper-
ties of quadratic systems, the slowly-varying added re-
sistance can be separated into two major components:
mean or steady second-order force (R̄AR) (the first term)
and slowly-varying second-order force (R2nd−AR) (the
second term), given by:

RAR = R̄AR+R2nd−AR (5)

RAR =
1
2

N

∑
k=1

(Ak)2H(ωk,−ωk)+

1
2

N

∑
k=1

N

∑
l=1

Re{AkAlH(ωk,ωl)ei[Δωt+Δφ]} (6)

where Δω=ωk−ωl and Δφ= φk−φl , and φk,l are wave
amplitudes and independent random phases varying be-
tween (0,2π), respectively, corresponding to the wave
frequency ωk,l . Note that Ak can be calculated from the
one-side sea spectrum (S+(ω)) by discretizing S+(ω)
into N equally intervals. Then, A2k = 2

R ωk
ωk+1 S

+(ω)dω for



k∈ 1, ...,N.H(ωk,ωl) represents the second-order trans-
fer function of hydrodynamics force. The response am-
plitude of the steady force normalized by the wave am-
plitude squared is denoted by R(ω); therefore, R(ω) is
assumed to be equal to 12H(ωk,−ωk). According to [20],
the mean added resistance is obtained from R(ω), and
it is computed from the MIT5D Code [5]. For the
slowly-varying added resistance, H(ωk,ωl) can be ap-
proximated as 2R(ωk+ωl2 ). From Newman’s approxima-
tion [18], R2nd−AR is associated with the diagonal terms
of H(ωk,ωl) if the difference of the two-frequency
wave, ωk and ωl , is very small, e.g., |ωk −ωl | < 0.2.

Table 2. Parameters of the 21 MW, 3-phase, 60-Hz syn-
chronous machine [29] in SI unit system.

rs = 1.27mΩ Lls = 369µH Lmq = 2.51mH
Lmd = 2.79mH rkq = 5.26mΩ Llkq = 157µH
rkd = 4.74mΩ Llkd = 69.8µH r f d = 401µΩ
Ll f d = 227µH P= 2

2.2. Integrated Power System (IPS)
The first major component of IPS is the synchronous

generator or machine (SM), which supplies electric
power to AC power distribution and propulsion sys-
tem. The mathematical model of a 3-phase, salient-pole
synchronous machine consists of the rotor windings -
the field winding ( f d), damper windings (kq and kd) -
and the symmetrical stator windings (qs,ds,0s). The de-
tailed equations are given in [22, 29] and the parameters
we used are shown in table 2 .
To maintain the bus voltage at a specified level, an

exciter is needed to feedback the bus voltage to the
generator. The exciter/voltage regulator, controlling the
field winding of the generator, is modeled according to
a simplified model of the IEEE type 2 [12]. This type
of exciter is typically accepted in the industry due to the
model’s simplicity. The main components of this exciter
are an independent power supply, a self-excited shunt
field, a stabilization feedback associated with gains and
time constants, and a nonlinear saturation in the shunt
field. The state equations for this type of exciter are de-
scribed in [22, 29] and the parameters used are shown in
table 3.

Table 3. Parameters of the IEEE Type 2 exciter [29]

vre f = 4160V vRmax = 7.37p.u. vRmin = 0p.u.
KF = 0.03 KA = 400 TA = 20ms
KE = 1.0 TE = 0.8s TF1 = 1.0s
TF2 = 1.0s AEx = 0.14 BEx = 1.75
TR = 1ms
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Figure 3. Three 5-phase equivalent circuits of 15-phase in-
duction machine in the qd0αβ synchronous reference frame,
where i ∈ 1, ...,5.

The propulsion system of IPS is driven by a 19 MW,
15-phase (squirrel cage) induction machine. The larger
number of phases in the induction motor is, the larger
the electromagnetic torque is and hence a more reli-
able motor operation can be achieved. In this study, the
model of the 15-phase induction machine is represented
by three 5-phase equivalent circuits in the qd0αβ refer-
ence frame, introduced in [29], such that the quantities
in the 0αβ axis are independent of those in qd axis. The
three 5-phase equivalent circuits of the 15-phase induc-
tion machine are represented in Figure 3. This shows
that the qd-axis stator and rotor voltages are highly cou-



Table 4. Parameters of the 19 MW, 15-phase induction ma-
chine [29] in SI unit system

rs = 122mΩ Lls = 6.79mH Lm = 145mH
r′r = 35.7mΩ L′

lr = 7.62mH P= 12

pled and nonlinear. All parameters of the 15-phase in-
duction machine are given in table 4.
Indirect Field Oriented Control (IFOC) of the 15-

phase induction motor drive requires an input torque
command (T ∗

e ) and a desired rotor flux command (λe∗dr)
and outputs semiconductor signals, driving the H-bridge
type inverters. Because of the multiple phases in the in-
duction motor, the power converter topology must be
separated into three five-phase parallel rectifier-dc link-
inverter paths, as shown in Figure 4. As a result, each
of the five phases of the induction machine can be inde-
pendently controlled using the paralleling control. The
dc voltage from a six-pulse uncontrolled rectifier (vr j ) in
each path or rail ( j) must be filtered with a low-pass LC
circuit before propagating to five ith H-bridges inverters.
In each rail, the smoothed dc voltage (vdc j ) can be ex-
pressed by vdc = [vdc1 ,vdc2 ,vdc3 ]where j= 1,2,3. Then,
the dc current (idc j ) in each rail is a summation of five ith
H-bridge current (idchi ). In each rail, the phase of the ith
H-bridge in Figure 4 is determined so that the AC volt-
age of ith H-bridge is displaced by (i− 1)24◦ from the
first phase. Each H-bridge is composed of four control-
lable semiconductor switches, denoted as D1i through
D4i .





 

 



 

















 



 

 



 

 



 

 



 

 



 

















 



 

 



 

 



 

 



 

 



 

















 



 

 



 

 



 





Figure 4. A diagram of the three five-phase rectifier-dc
link-inverter path in the power converter.

In this study, maintaining the induction machine’s
torque at a specified level is the main objective of IFOC.
According to [29], this control technique must be sta-
ble, the current be constrained below a maximum semi-
conductor current limit, the switching frequency be kept
constant at 2 kHz, and the IFOC act as a torque trans-
ducer. Thus, the structure of the field oriented control,
shown in Figure 5, consists of 6 main parts: a parallel-
ing control, a torque limiter, a dc link stabilizing control,
a current limiter, a field oriented supervisory control,
and a current regulator. Five-phase inverter-rail voltages
are controlled by the three independent control architec-
tures in the IFOC. Although there might exist a negative
impedance instability in the dc link due to the tight con-
trol of switch current, the IFOC’s fast response can help
stabilize the power converter. Details regarding the di-
agrams and corresponding governing equations of the
paralleling control, torque limiter, and current limiter
are given in [29]; the parameters used are shown in table
5.
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Figure 5. The link stabilized and indirect field oriented
controller.

We also model the pulsed power weapon system and
for this a 6-pulse rectifier and an LC pulse forming net-
work and its controller must be modeled such that a
specific voltage profile for charging a storage capaci-
tor can be supplied. Figure 6 shows the charging pro-
file of capacitor voltage; it increases linearly during the
charging interval, tcha, then the voltage is held constant
for a capacitor to be fully charged in the catch-up pe-
riod, tca. After the commutating period of thyristor, to f f ,
the capacitor is now ready to instantly discharge to the
pulsed load. The model of the pulsed power charger is



Table 5. Parameters of the indirect field oriented controller
for 15-phase induction machine [29]

Te,lim = 403kNm Te,slew = 12.03MNm/s
K = 20 τ= 20ms

Is,lim = 1000A vdcb = 5618V
Kpqx = 17.07V /A Kpqy = 17.07V/A
Kiqx = 306.6V /As Kiqy = 306.6V /As
Kpqz = 61.65V /A Kiqz = 504.9V /A

τx = 0.2ms τy = 0.2ms
τz = 0.2ms τ0 = 4ms
K0 = 4.175 λ∗dr = 44Vs

Table 6. Parameters of the pulsed power charger [29]

tch = 0.8sec tca = 0.1sec to f f = 0.05sec
td = 0.05sec Cpp = 4F Lpp = 3.21mH
rpp = 2.42µH Lc = 64.3µH Nps = 5

Kpi = 0.3213V /A Kpv = 80A/V Ilim = 6KA
V ∗
c = 1000V τ= 4.595ms

described in [29] and the parameters are given in table 6.
Controlling the charging profile of the storage capacitor
requires a firing angle control of the rectifier such that
the capacitor voltage follows the desired voltage.

!"#$ !"$ !%&& !'



Figure 6. Charging voltage profile for pulsed load.

3. METHODOLOGY
The time-varying random sea spectrum is modeled

as a stochastic process, but in addition, we consider
that some components of the IM and SM may be de-
scribed by uncertain parameters. To simulate this cou-
pled stochastic system and analyze its response we use

the probabilistic collocation method (PCM) and a
variance-based sensitivity approach as we describe next.

3.1. Stochastic Modeling – Polynomial Chaos
Polynomial chaos methods are essentially spectral ex-

pansions based on Askey-type orthogonal polynomial
functionals of random vectors. Generalized Polynomial
Chaos (gPC) was introduced in [34] as a generalization
of the Hermite Chaos expansions originally proposed by
Wiener [32].
Let (Ω,F ,P ) be a probability space. A general

second-order random process, i.e. a process with finite
variance, X(ω) ∈ L2(Ω,A ,P ) can be expressed by gPC
as

X(ω) =
∞

∑
i=0

âiΦi(ξ(ω)), (7)

where ω is the random event and Φi(ξ(ω)) are
polynomial functionals of degree p in terms of the
multi dimensional random variable ξ= (ξ1, . . . ,ξd). The
family {Φi} is an orthogonal basis in L2(Ω,F ,P ) with
orthogonality relation

〈Φi,Φ j〉 = 〈Φ2i 〉δi j, (8)

where δi j is the Kronecker delta, and 〈·, ·〉 denote the
ensemble average. Here, the ensemble average can be
defined as the inner product in the Hilbert space in terms
of the random vector ξ

〈 f (ξ),g(ξ)〉 =
Z

f (ξ)g(ξ)w(ξ)dξ or (9)

〈 f (ξ),g(ξ)〉 =∑
ξ

f (ξ)g(ξ)w(ξ) (10)

in the continuous and discrete case, respectively, where
w(ξ) denotes the weight function.
For a certain random vector ξ, the gPC basis {Φi} can

be selected in such a way that its weight function has the
same form as the probability distribution function of ξ.
The corresponding type of polynomials {Φi} and their
associated random variable ξ can be found in [34]. For
example, uniform distributions are represented by Leg-
endre polynomial functionals, exponential distributions
by Laguerre polynomial functionals, etc. The method
includes also discrete distributions with corresponding
discrete eigenfunctions as trial basis; e.g., Poisson dis-
tributions are represented by Charlier polynomial func-
tionals.



Equipped with finite-term spectral expansions of the
random input and unknown solutions, we can formu-
late the basic stochastic Galerkin and collocation spec-
tral methods via the usual projections. These proce-
dures essentially recast the stochastic problem as a high-
dimensional deterministic problem, whose dimension-
ality is prescribed by the random input and the order of
the approximating polynomials. The stochastic Galerkin
method usually requires the solution of a system of cou-
pled deterministic problems for the gPC basis coeffi-
cients unless the problem is linear in random space. The
stochastic collocation method [33, 30] (also known as
the probabilistic collocation method (PCM)) involves
sampling the deterministic system at a set of colloca-
tion points chosen to coincide with a numerical cuba-
ture rule. Thus, this method is often more easily imple-
mented than gPC in problems with random nonlineari-
ties.
A useful extension to gPC that can handle arbi-

trary PDFs was the development of the multi-element
version [31]. More recently, the multi-element method
was formulated for the collocation version of polyno-
mial chaos in [10], thereby extending the sparse-grid
integration work of [33]. This last version, which we
termed MEPCM (multi-element probabilistic colloca-
tion method), is simply a gPC expansion with colloca-
tion (instead of Galerkin) projection on subspaces (ele-
ments) of the random space. We have found MEPCM to
be superior in terms of efficiency over other versions of
polynomial chaos for benchmark problems but also for
computationally intensive simulations [10, 22].

3.2. Sensitivity Analysis
In the AES, sensitivity analysis can identify the influ-

ential and interactive parameters from a large number of
parameters needed for the IPS designer to improve per-
formances of the integrated system and to prevent a cas-
caded failure. Sensitivity analysis, based on the “One-
At-a-Time” (OAT) stochastic variation, has been shown
to be able to identify and prioritize the important param-
eters of an AC subsection in the entire IPS [19]. In ad-
dition, to further accelerate large-scale simulation and
potentially guide experimental studies, a reduction of
parametric space can be accomplished by fixing the less
important parameters at their nominal values.
The two main classes of techniques for ranking these

inputs in sensitivity studies are local and global meth-
ods. The local approach [11, 23], which relies on a par-
tial derivative of output with respect to input, is used to
measure the sensitivity around a local operating point.
When the system has strong nonlinearity and the in-
put uncertainties are contained within a wide range,
the local sensitivity does not provide full information
to the IPS designer. On the other hand, the global ap-
proach examines the sensitivity from the entire range of
the parameter variations. The screening methods, which
are included in the global methods, rank the impor-
tant factors and their interaction among a large num-
ber of system parameters. These screening techniques
are based on OAT perturbation of parameters, which di-
rectly yields the main input effect without input interac-
tion. Several screening methods have been proposed in
the literature, for example, the Morris method [16, 25],
Cotter’s method [7], factorial experimentation [2], and
iterated fractional factorial design [24]. The different
approaches have their strengths and weaknesses. The
Morris method can efficiently identify the sensitive pa-
rameters when a system has a large number of inputs
or parameters. Only the worst-case analysis of a system
is examined for the upper and lower bounds of system
variables in Cotter’s method. In factorial experimenta-
tion, all combinations of inputs’ interactions as well as
the main effects are evaluated at the same time, which
requires intensive computation. Iterated fractional fac-
tor design reduces this large input-combination compu-
tation by evaluating only important combinations but the
sensitivity indices might be biased.
To investigate the OAT global sensitivity, an elemen-

tary effect of i input on j output (EE j
i ) is defined as the

approximated gradient. Basically, EE j
i is a ratio of the

difference in outputs y j(x) over Δ when only i input de-
viates from its nominal value with Δ magnitude. This
definition of EE j

i is identical to that of Morris [16]. The
EE j

i can be formulated as:

EE j
i =

y j(x1,x2, . . . ,xi+Δ, . . . ,xk)− y j(x1,x2, . . . ,xi, . . . ,xk)
Δ

,

where xi with i= 1, . . . ,k is contained within a domain
of variation. For y j outputs with j = 1, . . . ,n, we need a
total of n× k computations of EE j

i . Using the local gra-
dient computation, when ∂y j/∂xi is equal to 1) zero, 2)
a non-zero constant, or 3) a non-constant function of in-
put parameter/s, the effects of xi on y j are 1) negligible,



2) linear and additive, or 3) nonlinear and coupled, re-
spectively. The numerically approximated gradient can
capture all the above effects – it is called the elemen-
tary or first-order effect. If all x except xi are fixed at
their nominal values, the EE j

i can only rank the input
parameter according to the first-order or elementary ef-
fect without specifying any influence of the interaction
among inputs. However, by randomizing all values of x
in computing EE j

i , the interaction effects can be discov-
ered from the variation of the EE j

i distribution.
In [22], four sensitivity analysis techniques for rank-

ing the inputs’ significance and the nonlinear and cou-
pling effects of inputs were studied. Two of them were
based on gradient-based analysis while the other two
were based on variance-based analysis. Gradient-based
methods, while effective in general, can be very costly
and are not so accurate for non-smooth solutions. The
regularity required for computing the local gradient
at one point in a parameter range to be representa-
tive of the gradient over the entire range is not guar-
anteed nor expected for a nonlinear system like IPS.
To this end, we also consider variance-based methods
and investigate their connection to gradient-based meth-
ods. Specifically, we make some mathematical connec-
tions between MEPCM local variance-based sensitiv-
ity techniques and gradient-based methods. Let us fo-
cus on a particular hypercube element B, a subset of the
N-dimensional parametric space, written without loss
of generality as the product set ∏N

i=1 [x0,i−h,x0,i+h]
where x0 = (x0,1,x0,2, ...,x0,N) is the center of B. Sup-
pose we have a function f ∈ C3(B) and assume X is
a random variable uniformly distributed on B. It can
be shown [9] that the variance of f (X) over Bi, when
normalized with the one-dimensional uniform distribu-
tion variance, approximates the norm of the gradient
‖∇ f |x0‖2 in the limit as h → 0+. This result is easily
generalizable to rectangular B, but we will assume uni-
form edge lengths for simplicity here. Specifically, we
have:

VarB[ f (X)]
h2
3

= ‖∇ f |x0‖
2+O(h2).

The rate of convergence here isO(h2), which is indepen-
dent of N. Hence, we see that the variance-based sensi-
tivity analysis is related to the gradient-based sensitivity
analysis as indicated in the above relationship.
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Figure 7. Duffing’s oscillator: Top - Mean sensitivity
E[EEi] of η, ω, and ε as a function of time, t ∈ [0,1] sec-
onds, using the Morris method (solid-line), the Monte Carlo
Sampling (MC) (dash-line), and Collocation method (FPCM)
(dot-line). Bottom: Interaction effect σ[EEi] versus mean sen-
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3.3. Example: Stochastic Duffing’s Oscillator
Having discussed the use of polynomial chaos and

in particular MEPCM in solving stochastic differential
equations we present an example, namely the nonlinear
Duffing oscillator, to demonstrate the results of sensitiv-
ity analysis. The governing equation is

dy2

dt
+2ηωdy

dt
+ω2y+ εω2y3 = 1.0, (11)

with dy(0)/dt = 0;y(0) = 2, where η, ω, and ε are the
damping coefficient, natural frequency, and coefficient
of the cubic nonlinearity. All η, ω, and ε are assumed
to be independent uniform random variables with mean
of 2 and standard deviation of 0.2 for unbiased weight-
ing. From this nonlinear system, ω is the most influential



parameter due to the quadratic nonlinearity and strong
coupling with the other two terms of the equation. How-
ever, this might not be the case for all times between
[0,1] seconds. We will use the mean value of the elemen-
tary effect, E[EEi], to quantify the sensitivity and the
standard deviation, σ[EEi], to quantify the interaction
between parameters. As shown in Figure 7(top), the tra-
jectories of normalized E[EEi] for the three random pa-
rameters are plotted as a function of time using the Mor-
ris method, the Monte Carlo Sampling and Collocation
methods with Δ = 1

2 , which are based on the gradient
computation; similar results are obtained also with the
variance-based methods [22]. Note that the normalized
E[EEi] trajectories from the Monte Carlo and Colloca-
tion methods are identical and also match closely that of
the Morris method. From the plot of normalized E[EEi]
versus time, the sensitivity effect of ω is dominant at the
first quarter of a second and again after 0.6 seconds; the
damping effect of η surpasses that of ω only between
0.35 and 0.6 seconds. These changing trends occur be-
cause of the cubic nonlinearity in the last term of the
Duffing equation. In addition, we can consider the rank-
ing of inputs’ first-order and coupling effects at a speci-
fied time, as shown in Figure 7(bottom) for t= 23 seconds.
For the values chosen, the interaction effects of η and ω
are about the same at this fixed time instant whereas at
earlier times the interaction effect of ω dominates.

4. IPS RESULTS
We now return to the IPS and consider the coupled

IPS-Hydrodynamics stochastic system; here we simu-
lated the surge motion of the electric ship excited by
the Pierson and Moskowitz spectrum with H 1/3 = 20 ft.
The interaction between the ship speed, propulsion load,
and electric machines’ states are examined for sea state
6, very rough sea [3]. Two identical IPS, as shown in
Figure 1, with the torque control using the IFOC, di-
rectly connected to the propeller, drive the 1DOF ship
motion in head and random seas, see Figure 2. We note
that this is a simplified model and does not correspond
to the full DDG-51 configuration which requires 4 IPS
to reach 31 knots, see table 1. Here we further assume
that initially two generators operate near their steady-
state conditions and then after 2 seconds the two propul-
sion drives are turned on while the ship moves forward
at about 20 knots. The mean added resistance and the

slowly-varying added resistance of the scaled electric
ship are computed using Newman’s approximation and
the added resistance response amplitude operator [18].
Thus, the propellers driven by IPS experienced the slow-
varying force from the added resistance.
In this section, we simulate the effects of both the

propeller emergence and the pulsed power load charger
on the IPS. First, we consider only the induction mo-
tor drive with a constant voltage supply in order to tune
the field-oriented controller. Second, we consider the
entire IPS that includes the generator, bus and the IM
drive connected to a propeller. These machines exhibit
a strong interaction when they are first connected to-
gether due to start up dynamics and have to be turned on
sequentially. In this case, we investigate the ship surge
motion driven by the highly skewed propeller connected
to the IPS. Finally, a 5 MW pulsed power charge is
added to the IPS’s AC distribution system in order to
examine the effect of a sudden large load propagating
through the entire IPS. We also present stochastic simu-
lations that take into account the uncertainty associated
with two parameters of IPS.

4.1. Parameter Sensitivity
First, in order to check that the field-oriented con-

trol of the 15-phase induction machine (IM) is working
properly, we separate the 19 MW IM drive from the gen-
erator and distribution bus in order to tune separately the
parameters of IM drive. The controller of IM is indepen-
dently provided with a constant 3-phase voltage (Vabc),
supplying the 3 parallel rectifier dc link paths, as shown
in Figure 8. In this model, a simplified hydrodynamics
model from [29] is used as a torque load.

Figure 8. Simulink diagram of the field-orient control of
15-phase induction machine.



Initially, the induction machine is started from rest
with a small constant torque command of 1000 N-m and
then at 10 seconds the torque command is increased to
8×105 N-m. Using the controller parameters (slew rate
(Tslew = 4× 106) and proportional gain (K = 100) re-
ported in [29] leads to large overshoots in both machine
torque and rectifier dc current, as shown in Figures 9
and 10. The gain K of the torque limiter for each rail
must be decreased to reduce overshoots in IM drive’s
response, but the slew rate (Tslew) of torque limiter need
to be increased to reduce response time of the IM torque
Te and Rectifier dc current Idc. Thus, we will use the val-
ues of K = 20 and Tslew = 12×106 in the rest of the pa-
per. Note that the proportional and integral gains of the
XYZ current control have only minor effect on the large
overshoot corresponding to the step torque command.
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Figure 9. Step change: Induction machine torque with dif-
ferent K and Tslew.
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Next, we examine the specific effects of propeller
emergence that causes a load torque reduction on the
IM drive. Given a constant voltage source, the 15-phase

motor drive connected to a Boswell’s highly skewed
propeller [1], we allow only surge motion of the ship
in a head sea corresponding to Pierson and Moskowitz
spectrum with H1/3 = 20 ft. The effective disc area of
the propeller is reduced when the propeller emerges out
of water. We note that the thrust loss factor, βT , and
the torque loss factor, βQ, should be multipleed by the
propeller thrust and torque, respectively. The propeller
emergence leads to an increase in motor’s or propeller’s
angular speed by about 7% and a negligible change in
ship speed, as shown in Figure 11. Furthermore, in Fig-
ure 12, the phase current of induction first decreases and
subsequently increases while the propeller is out of the
water. However, the rectifier phase current must be in-
creased slightly to compensate for an abrupt increase in
IM’s speed.
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Figure 11. Propeller emergence: Responses of the IM’s
torque, IM’s angular speed, and ship speed due to the thrust
and torque reduction.

4.2. Pulsed Power Load
To examine the effect of a 5 MW pulsed power load

on the entire system, in this scenario, the generator and
bus are operated near their steady state condition and
then at time = 0.5 seconds, the IM drive, also operat-
ing close to its steady state, is turned on with a constant
torque command of 9.25× 105 N-m. The pulsed power
charger is switched on at 6 seconds and, in addition, the
thrust loss factor is imposed at the propeller thrust and
torque at the same time. There are sudden increases and
decreases in the SM current and bus voltage because a
relatively large power is instantaneously drawn from the
bus to support the pulsed power charger. Consequently,
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Figure 12. Propeller emergence: Responses of the IM’s
and rectifier’s phase currents due to the thrust and torque re-
duction.

the SM torque increases and the exciter tries to increase
the field-winding voltage to maintain the voltage at a
constant level. However, only minor effects are exhib-
ited in the IM torque and angular speed due to the pulsed
power charge, as shown in Figure 13 14, 14, 15, and
16 (with an enlargement scale). The IM speed again in-
creases with the torque loss as a result of the propeller
emergence.
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Figure 13. Responses of generator and induction motor
phase-current and bus phase-voltage due to charging a pulsed
power charger at time = 6 seconds.
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Figure 14. Responses of generator and induction motor
torque and angular speed due to charging a pulsed power
charger at time = 6 seconds.
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Figure 15. Responses of exciter field-winding voltage, rec-
tifier rail 1 voltage, capacitor voltage (Vca) of pulse power
charger, and inductor current (Ir) of pulsed power charger due
to charging a pulsed power charger at time = 6 seconds.

4.3. Stochastic Simulations
We now consider both the SM field-winding resis-

tance, r f d , and the IM rotor inertia, J, to be uniform
random variables with 20% variation from their nom-
inal values. Our objective is to examine the stochastic
responses of SM, exciter, IM, Ship, and pulsed power
charger because of the uncertainty propagation from
these parameters. Using a full-grid collocation method
(FPCM) [22], stochastic variations of all system re-
sponses can be computed from the 25-point Gauss-
Legendre quadrature. Specifically, the sampling points
are simply fixed points in the parameter space defined
by the roots of the Legendre orthogonal polynomials
employed in the representation of all stochastic fields.
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A variation in r f d might be caused by an operational
temperature dependence. On the other hand, the value
of IM rotor inertia is not readily available in the lit-
erature and hence it can be modeled as uncertain pa-
rameter. The same scenario as in the previous case is
considered. Figure 17, plotting the root-mean square or
standard deviation, shows strong variation in SM and
IM phase-currents and bus phase voltage only when IM
is turned on near its steady state condition. Then, root-
mean square values of these currents and voltage os-
cillate with small magnitude. There are large variations
in SM and IM torque, but variations in both IM angu-
lar speed and ship forward speed are small, as seen in
Figure 18 and 19. However, Figure 20 shows a non-
negligible effect on the exciter field-winding voltage and
rectifier dc voltage due to these uncertainties. This in-
dicates the importance of knowing the precise value of
r f d , which we have also verified with more elementary
parametric studies.

5. CONCLUSION
We have presented detailed models for the two

primary components of the All-Electric Ship (AES),
namely the Integrated Power System (IPS) and the Hy-
drodynamics. This is the first time that all components
of each system have been modeled and coupled together
at this level. Simulating such a coupled system on to-
day’s computers is feasible, and results can be obtained
in a matter of minutes – even for long-time integra-
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Figure 17. Root-mean square responses of generator and
induction motor phase-current and bus phase-voltage due to
charging a pulsed power charger at time = 6 seconds.
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Figure 18. Root-mean square responses of generator and
induction motor torque (Te) and angular speed (ωrm) due to
charging a pulsed power charger at time = 6 seconds.

tion of the system – to include the characteristic elec-
tric, mechanical and hydrodynamic scales. We note that
these characteristic time scales, even of the small sub-
components, are not input to the problem but they are
part of the solution, unlike other models where sim-
plified lumped parametrizations are employed. In addi-
tion we have demonstrated how we can use polynomial
chaos representations to model parametric uncertainties
in some of the compoents of the electromechanical sys-
tem. This, in turn, allows us to expeditiously quantify
the global sensitivity of the system – a very important
component in design process. For example, in the case
we simulated stochastically we showed that the SM field
winding resistance, r f d , has a big effect on the exciter
that controls the voltage of the SM. Our aim in this
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Figure 19. Root-mean square responses of Ship Speed and
magnitude of slowly varying added resistance.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Ex
cit

er
 : 

RM
S(

E x
fd

) [
p.

u.
]

0 2 4 6 8 10
0

100

200

300

400

500

Re
ct

ifie
r R

ai
l 1

 : 
RM

S(
V d
c) [

V]

6 6.5 7 7.5 8 8.5 9 9.5 10
0

5

10

15

20

Pu
lse

 P
ow

er
 C

ha
rg

er
 : 

RM
S(

V c
a) [

V]

time [sec]
6 6.5 7 7.5 8 8.5 9 9.5 10

0

0.05

0.1

0.15

0.2

0.25

Pu
lse

 P
ow

er
 C

ha
rg

er
 : 

RM
S(

I r) [
A]

time [sec]

Figure 20. Root-mean square responses of exciter field-
winding voltage, rectifier rail 1 voltage, capacitor voltage
(Vca) of pulse power charger, and inductor current (Ir) of pulse
power charger due to charging a pulsed power charger at time
= 6 seconds.

first paper was to demonstrate the capability of the new
framework, and we will report more systematic sensitiv-
ity studies in future work.
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